EPFL Innogrants & Support to Start-Ups

Hervé Lebret & Corine Zuber - September 2017
The Innovation Dilemma

“I read occasionally about attempts to set up "technology parks" in other places, as if the active ingredient of Silicon Valley were the office space. An article about Sophia Antipolis bragged that companies there included Cisco, Compaq, IBM, NCR, and Nortel. Don't the French realize these aren't startups?”
Paul Graham

“How to be Silicon Valley?”

Few startups happen in Miami, for example, because although it's full of rich people, it has few nerds. It's not the kind of place nerds like. Whereas Pittsburgh has the opposite problem: plenty of nerds, but no rich people.
How not to be Sophia Antipolis?

Ingredients of tech clusters…

- Universities and research centers of a very high caliber.
- An industry of venture capital (i.e. financial institutions and private investors).
- Experienced professionals in high tech.
- Service providers such as lawyers, head hunters, public relations and marketing specialists, auditors, etc.

Last but not least, an intangible yet critical component: a pioneering spirit which encourages an entrepreneurial culture.

Source: M. Kenney “Understanding Silicon Valley, the Anatomy of an Entrepreneurial Region”, in chapter: “A Flexible Recycling” by S. Evans and H. Bahrami
AGENDA

INNOVATION AND TECH. TRANSFER

THE INNOGRANTS
ROLE MODELS
ABOUT SOME INNOGRANTS
Some numbers

Campus (2016)
10,536 students, of whom 2,124 PhD students
346 faculty
3,755 staff (scientific & technical)

Spending (2016)
CHF 674M from State budget
CHF 267M other funding (EU, SNSF, private...)
Total: CHF 941M
EARLY AND CONTINUOUS COMMITMENT OF EPFL

- 2017 Focus on student entrepreneurs
- 2016 VPIV transformed as VPI with TTO joining VPR
- 2015 New Start-up Guidelines
- 2015 China Hardware Innovation Camp
- 2014: The Eurotech Venture Program (EVP)
- 2013: La Forge
- 2011: VPIV moves to Innovation Park
- 2010: EPFL Innovation Park
- 2009: the Garage
- 2008: seed fund
- 2007: revised TT regulations & overhead policy
- 2006: new partnerships: endowed chairs, indus. Incubators
- 2005: centers, programs, Innogrants, TT Alliance
- 2004: vice-presidency for innovation and tech. transfer (VPIV)
- 2003: legal framework adapted for efficient TT
- 2000: first equity deals
- 1999: rules for remuneration of inventors and labs
- 1999: entrepreneurship courses
- 1998: technology transfer: creation of the TT office (SRI)
- 1997: coaching for early stage start-up projects
- 1995: pre-seed money for start-up projects: foundation FIT
- 1993: IP strategy / licensing
- 1991: science park created: foundation PSE
- 1988: policy for research contracts & partnerships
- 1986: two first major strategic industrial partnerships
- 1986: industrial liaison program: Cast / association APLE
VPI - A FACILITATOR BETWEEN TWO WORLDS

VPR
- Transdisciplinary Centers & Discovery Projects
- Technology Transfer Office (TTO)
- Contracts / Licenses / PoC (Enable)

VPI
- Strategic Partnerships
- Innovation Park
- Alliance - relationships / collaborations with SMEs
- Entrepreneurship
- Innogrants
What’s are Start-ups? What do they need?

In the USA, “a start-up is a temporary organization designed to search for a repeatable and scalable business model.”

Steve Blank

At EPFL, resources include:

- **Advice** (training, coaches, mentoring)
- **Funding** (grants, prizes, investments)
- **Office space** (co-working spaces, incubators, accelerators, science parks)
- **Exposure** (events, networking, role models, pitching of ideas)
- **Internationalization** (trips, bus. dev., foreign offices)
Funding: Surviving the Valley of Death at EPFL
IT’S not about MONEY only: A RICH and DENSE Ecosystem

Advice/Training:

Exposure/networks:

Housing:

Research
Grants

Development
Grants

Preseed
Grants

Friends, Family & Fools

Business
Angels, Seed VCs

Early Stage
VCs, Corp.
Partners

Late Stage VCs
(… M&A / IPO)

Basic
Research

Applied
Research

Proof of Concept / Business Case

Prototype Founders

Prototype Founders

Product Development

Company
Fast Growth
(Revenues,
Employees)

“A Valley of Death”

Start-Up foundation

A rich ecosystem

More than funding
A Rich Ecosystem

An exhaustive description is available online

http://short.epfl.ch/ecosystem
Close Support: The EPFL Innovation Park

- The Innovation Park: 13 buildings for companies partnering & collaborating with EPFL
 http://epfl-innovationpark.ch

- Including 6 buildings for start-ups, offering a variety of value-added services (coaching, training, funding,…)

- The Garage (opened in 2008) for very early stage ventures.

- A co-working open-space for early projects
"During the 1970s and 1980s, many of the top engineers from Fairchild, National and other companies would meet there to drink and talk about the problems they faced in manufacturing and selling semiconductors. It was an important meeting place where even the fiercest competitors gathered and exchanged ideas."

“If there is a single point I wish to make here today, it is that as a discipline, both in industry and in academia, we are just not taking enough risks today.”

Richard Newton (1951-2007)
Any Start-up Project Takes Time

Pedro Bados (Nexthink) is a just one but clear illustration that even a friendly ecosystem will not avoid a long maturation.

- **Sept 03:** Invention disclosure
- **March 04:** Option for License
- **April 04:** Patent filing
- **Janv. 04:** Contact with an IT expert
- **May 04:** Publication in Dialogue newsletter
- **Mar 04-Jun 04:** Coaching PSE financed by EPFL
- **Jun 04:** Loan of CHF100k
- **Sept 04:** Foundation of NEXThink SA
- **Avril-Sept 04:** Further coaching
- **Déc. 04:** Winner of the “startup competition”

As of 2016, more than 65M in funding, more than 200 employees, www.nexthink.com

- **Jun 04:** Loan of CHF100k
- **Dec 04:** Contacts with VCs
- **Apr 06:** 1st round CHF 1.6M
- **Jul. 07:** 2nd round CHF 6M
- **Jan 05:** 1st pilots with customers

A 2-3 year initial phase
EPFL Spin-offs following Logitech

All EPFL start-ups on https://vpi.epfl.ch/EPFL_Spin-offs
<table>
<thead>
<tr>
<th>Company</th>
<th>Founded</th>
<th>VCs</th>
<th>Amount raised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snaketech*</td>
<td>1997</td>
<td>Auriga, Innovacom, Sudinnova</td>
<td>CHF 3M</td>
</tr>
<tr>
<td>Cytion*</td>
<td>1997</td>
<td>Banexi</td>
<td>CHF 5M</td>
</tr>
<tr>
<td>Endoart*</td>
<td>1998</td>
<td>Sofinova, VI, Vinci</td>
<td>CHF 31M</td>
</tr>
<tr>
<td>Dartfish</td>
<td>1998</td>
<td>Vinci, Intel</td>
<td>CHF 20M</td>
</tr>
<tr>
<td>BeamExpress</td>
<td>2001</td>
<td>Index, Oak, i-source, Polytech</td>
<td>CHF 30M</td>
</tr>
<tr>
<td>Innovative Silicon</td>
<td>2002</td>
<td>Index, Austin, Highland, Auriga, Wellington</td>
<td>CHF 60M</td>
</tr>
<tr>
<td>Sensimed</td>
<td>2003</td>
<td>Wellington, Vinci</td>
<td>CHF 57M</td>
</tr>
<tr>
<td>HPL*</td>
<td>2004</td>
<td>VI, DFJ ePlanet, BankInvest</td>
<td>CHF 8M</td>
</tr>
<tr>
<td>Nexthink</td>
<td>2004</td>
<td>VI, Auriga, Highland Europe, Waypoint</td>
<td>CHF 65M</td>
</tr>
<tr>
<td>Biocartis</td>
<td>2007</td>
<td>Advent, KBC, Aescap</td>
<td>CHF 330M</td>
</tr>
<tr>
<td>Aleva Neurotherapeutics</td>
<td>2008</td>
<td>Biomed Inv., BB Biotech, Defi Gestion, Banexi</td>
<td>CHF 44M</td>
</tr>
<tr>
<td>Bicycle Therapeutics Ltd</td>
<td>2009</td>
<td>Novartis Venture, Atlas, SR-One</td>
<td>CHF 36M</td>
</tr>
<tr>
<td>Anokion</td>
<td>2010</td>
<td>Versant, Novartis, Novo</td>
<td>CHF 33M</td>
</tr>
<tr>
<td>Lightbend</td>
<td>2010</td>
<td>Greylock, Shasta, Polytech, Intel, IBM</td>
<td>CHF 52M</td>
</tr>
<tr>
<td>Abionic</td>
<td>2010</td>
<td>Polytech, Blue Ocean, Medholdings</td>
<td>CHF 13M</td>
</tr>
<tr>
<td>Kandou Bus</td>
<td>2011</td>
<td>Bessemer</td>
<td>CHF 25M</td>
</tr>
<tr>
<td>Mindmaze</td>
<td>2012</td>
<td>Hinduja Group, Buss angels (inc. Leonardo DiCaprio)</td>
<td>CHF 100M</td>
</tr>
<tr>
<td>L.E.S.S.</td>
<td>2012</td>
<td>VI Partners</td>
<td>CHF 3M</td>
</tr>
<tr>
<td>Quartet Medicine</td>
<td>2013</td>
<td>Atlas, Novartis, Pfizer</td>
<td>CHF 23M</td>
</tr>
<tr>
<td>G-therapeutics</td>
<td>2014</td>
<td>Gimv, Wellington Partners, LSP, Inkef Capital</td>
<td>CHF 30M</td>
</tr>
<tr>
<td>BestMile</td>
<td>2014</td>
<td>Partech, Serena, Airbus</td>
<td>CHF 5M</td>
</tr>
<tr>
<td>Inpher</td>
<td>2015</td>
<td>Polytech, Bowery, Crosslink</td>
<td>CHF 4M</td>
</tr>
</tbody>
</table>
Many companies attracted by the EPFL Innovation Park and the dynamic local economy

<table>
<thead>
<tr>
<th>Company</th>
<th>Founded</th>
<th>Amount raised</th>
<th>IPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Immune</td>
<td>2003</td>
<td>CHF 125M</td>
<td></td>
</tr>
<tr>
<td>Sophia Genetics</td>
<td>2011</td>
<td>CHF 28M</td>
<td></td>
</tr>
<tr>
<td>Leman Micro Devices</td>
<td>2012</td>
<td>Undisclosed</td>
<td></td>
</tr>
<tr>
<td>Asceneuron</td>
<td>2012</td>
<td>CHF 36M</td>
<td></td>
</tr>
<tr>
<td>Corpacademy</td>
<td>2013</td>
<td>CHF 14M</td>
<td></td>
</tr>
</tbody>
</table>
High-Growth Start-ups

- More than CHF1B raised by EPFL spin-offs with venture capital and business angels

- In addition, many entrepreneurial alumni & academics

![Graph showing growth of CHF raised by EPFL spin-offs and entrepreneurs from 1999 to 2016.](image-url)
EPFL Spin-off Recent Exits

- **Biocartis**: IPO in April 2015 in Brussels
- **Lemoptix**: Acquired by
- **SenseFly**: Acquired by
- **Pix4D**: Acquired by
- **Jilion**: Acquired by
- **Parrot**: Acquired by
- **Aimago**: Acquired by
- **Bugbuster**: Acquired by
- **Sensima Technology**: Acquired by
- **FaceShift**: Undisclosed acquirer rumored to be Apple
- **Novadaq**: Acquired by
- **AppDynamics**: Bought by Cisco for $3.5B in Jan. 2017
- **MPS**: Monolithic Power Systems

Start-ups

Exits
A 16-page report published in June 2017 analyzing 312 EPFL spin-offs (165 since 2007) with a focus on:
- Fund raising: CHF1.2B overall
- Job creation: about 2’000 today in 200 firms
- Migrants: from 25% in the 90’s to 70% today

http://short.epfl.ch/startup-report
AGENDA

INNOVATION AND TECH. TRANSFER

THE INNOGRANTS

ROLE MODELS

ABOUT SOME INNOGRANTS
BACKGROUND

The Innogrants were created in February 2005 by EPFL with the support of Lombard Odier to:

- award **grants** that would **encourage** idea creation and help ideas to be developed,

- organize **events** facilitating the evolution of the innovation and entrepreneurial **culture**.

https://vpi.epfl.ch/innogrants
Sept premiers projets dans le giron de l’Innovation Network de l’EPFL

Unique en Europe, ce fonds, destiné à accélérer la concretisation d’idées internes à l’école, est activement soutenu par LODB.

Un fonds pour transférer plus vite les nouveautés de l’EPFL vers l’économie

Initiative

Une première en Europe. Seul le MIT aux États-Unis possède une politique similaire.

L’école polytechnique fédérale de Lausanne (EPFL) vient de créer un fonds destiné à des projets liés aux nouvelles technologies et ayant un fort potentiel commercial. Ce capital d’innovation accélère avant la commercialisation d’une entreprise basée sur l’innovation.

Un fonds de 3 millions de francs, géré par l’équipe de Prof. Andreas Mavrogiannis et Prof.有效的 Koenraud Meier, prévoit des prêts de 30 à 50% pour un délai d’ouverture de 12 mois.

Le portefeuille des projets sélectionnés est diversifié, couvrant des domaines tels que l’énergie, les matériaux, les biotechnologies, les technologies médicales et les énergies renouvelables.

Le fonds d’innovation est géré par l’Office des technologies de l’EPFL.

La création de ce fonds est un pas important pour l’EPFL dans sa stratégie de développement de l’innovation et de commercialisation.

Les premiers projets sélectionnés

1. **Sécurité électronique**
 - **Objectif**: Création d’un nouveau système de sécurité pour les réseaux de communication.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

2. **Santé numérique**
 - **Objectif**: Développement d’un nouveau service de santé en ligne.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

3. **Energies renouvelables**
 - **Objectif**: Création d’une nouvelle technologie de production d’énergie renouvelable.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

4. **Ingénierie des matériaux**
 - **Objectif**: Développement d’un nouveau matériau pour les industries automobiles.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

5. **Biotechnologies**
 - **Objectif**: Création d’un nouveau service de test génétique.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

6. **Technologies médicales**
 - **Objectif**: Développement d’un nouveau dispositif médical.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

7. **Energies renouvelables**
 - **Objectif**: Création d’une nouvelle technologie de production d’énergie renouvelable.
 - **Présentateurs**: Prof. Andreas Mavrogiannis et Prof. Koenraud Meier.

Les premiers projets sélectionnés sont en phase de développement et sont attendus pour donner lieu à des prototypes d’ici à mi-2018. Les projets seront ensuite évalués pour une possible commercialisation.

Les partenaires de ce fonds sont des entreprises et des institutions de recherche qui apportent leur soutien financier et technique pour le développement des projets.

Le fonds d’innovation est une initiative qui permet aux chercheurs de l’EPFL de transformer leurs idées en produits réels, en passant par la création d’entreprises innovantes. Cela permet d’accelérer le processus de transfert des technologies vers le secteur privé, en répondant à la demande croissante des entreprises de solutions novatrices.

La création de ce fonds est un pas important pour l’EPFL dans sa stratégie de développement de l’innovation et de commercialisation.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

Les initiatives de ce type sont essentielles pour le développement durable de l’EPFL, permettant d’engager des recherches et des innovations qui répondent aux défis les plus urgents de notre temps.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.

La fondation de ce projet est un investissement dans l’avenir de l’EPFL, en permettant aux chercheurs de développer des innovations qui auront un impact significatif sur le monde de demain.
Facts & Figures

About 740 requests
108 grants (CHF10.3M)
68 companies created
CHF 32M in new grants
CHF 295M in equity
7 exits (M&As)

Innogrant origin

STI (Engineering); IC (Computer Science Communications); SV (Life Sciences);
ENAC (Environment & Architecture); SB (Basic Sciences);
CDM (College of Management de Technology)

Innogrant vs. Immigrant

STI (Engineering); IC (Computer Science Communications); SV (Life Sciences);
ENAC (Environment & Architecture); SB (Basic Sciences);
CDM (College of Management de Technology)
The SNF Spin Funds

Similar to the Innogrants in the IT field, managed by EPFL, Swiss-wide; ended in 2012.

16 projects (CHF 1.9M)
7 start-ups, 35M equity

http://www.mics.org/spinfund

http://www.nccr-robotics.ch/tech-transfer/startups/spinfund

Established in July 2013
4 projects

EPFL Innogrants | 2017 27
A Bet on People

with the support of

Young entrepreneurs
The Outputs

All EPFL start-ups on https://vpi.epfl.ch/EPFL_Spin-offs
AGENDA

INNOVATION AND TECH. TRANSFER

THE INNOGRANTS

ROLE MODELS

ABOUT SOME INNOGRANTS
“Launching a start-up is not a rational act. Success only comes from those who are foolish enough to think unreasonably. Entrepreneurs need to stretch themselves beyond convention and constraint to reach something extraordinary.” Vinod Khosla

“The difference is in psychology: everybody in Silicon Valley knows somebody that is doing very well in high-tech small companies, start-ups; so they say to themselves “I am smarter than Joe. If he could make millions, I can make a billion”. So they do and they think they will succeed and by thinking they can succeed, they have a good shot at succeeding. That psychology does not exist so much elsewhere.” Tom Perkins
IT’S ALSO ABOUT ROLE MODELS
Innogrants
Events

https://vpi.epfl.ch/startup_champions
Thursday, November 6th, 2014
from 12:00 to 14:00, Room BC420, EPFL

How to build a Billion dollar Company

Speaker: Michael Baum
Founder & CEO of Founder.org
Founder of Splunk (IPO)
Founder of 5 other startups (5 exits)

Thursday, February 19th, 2015
from 12:30 to 13:30, Rolex Learning Center, EPFL

Registration is mandatory. Register for free on www.founder.org/tickets

https://vpi.epfl.ch/startup_champions
Startup Champions @ EPFL
Swiss startups, international investors and global markets!

Thursday, April 21st, 2016
from 14:00 – 17:00 (doors open 13h30)
Rolex Learning Center Forum, EPFL

Registration free but mandatory: www.venturelab.ch/SC

Startups Champions Seed Night @ EPFL
Wednesday, April 26th, 2017
from 18:30 – 21:00 (doors open at 17:00 for startups’ exhibition)
Rolex Learning Center Forum, EPFL

Save your ticket now: www.venturelab.ch/startup-champions-seed-night

Keynote
Tej Tadi
Founder & CEO
Mindmaze
Switzerland’s unicorn

Seed Night pitch competition
24 world-class startups selected for a unique competition, including 20 winners of the venture leaders programs and next generation of EPFL entrepreneurs.

Join us to vote for the best startup!

Startup Champions @ EPFL
Swiss fintech startups

Date: Thursday, November 17th,
Time: From 17:30 – 20:00 (doors open)
Place: Rolex Learning Center Forum, EPFL

Keynote:
„Success recipe for entrepreneurs“

3 fintech Startups on the starting blocks:
George Rousakis
Founder of Temenos
Sakthish Thiruvengadham
CEO of microFinance
Eike Pappert
CEO of Avalon

Registration free but mandatory: www.venturelab.ch/SC

Startup Champions @ EPFL
The multiple lives of entrepreneurs

Date: Wednesday, October 25th, 2017,
Time: from 17:30 – 19:00 (doors open at 17:00)
Place: Rolex Learning Center Forum, EPFL

Keynotes:
Didier Guccioni
From founder of Siri to Senior Software Engineer at Apple

Szymon Kostrewski
From founder of KB Medical, to Vice President, International Product Development, Robotics at Globus Medical

Free but mandatory registration: www.venturelab.ch/SUC

Student’s special: learn more about new EPFL initiatives for students with a business idea and get inspired by two young EPFL startups, Inneight and Acreity. Free Pizza lunch, mandatory registration: bit.ly/2pMDV

https://vpi.epfl.ch/startup_champions
Trying

http://lausanne.startupweekend.org
Drink Local, Think Global

So let me just add my translation of a quote by Daniel Borel, co-founder of Logitech and one of the infrarouge guests, that is extracted from an interview to magazine Trajectoire published on November 16, 2009. I think that it is consistent with what I usually publish here:

"The only answer that I may provide is the cultural difference between the USA and Switzerland. When we founded Logitech, as Swiss entrepreneurs, we had to enter very soon the international scene. The technology was Swiss but the USA, and later the world, defined our market, whereas production quickly moved to Asia. I would not like to look too affirmative because many things change and many good things are done in Switzerland. But I feel that in the USA, people are more opened. When you receive funds from venture capitalists, you automatically accept an external shareholder who will help you in managing your company and who may even fire you. In Switzerland is not very well accepted. One prefers a small pie that is fully controled to a big pie that one only controls at 10%, and this may be a limiting factor.”

Tags: Switzerland
Steve Jobs about why Silicon Valley “[There are] two or three reasons. You have to go back a little in history. I mean this is where the beatnik happened in San Francisco. It is a pretty interesting thing…You’ve also had Stanford and Berkeley, two awesome universities drawing smart people from all over the world and depositing them in this clean, sunny, nice place where there’s a whole bunch of other smart people and pretty good food. And at times a lot of drugs and all of that. So they stayed… I think it’s just a very unique place”

Don Valentine on Founders: “Founders are genetically impossible by choice.” “There are only two true visionaries in the history of Silicon Valley. Jobs and Noyce. Their vision was to build great companies…Steve was twenty, un-degreed, some people said unwashed, and he looked like Ho Chi Min. But he was a bright person then, and is a brighter man now... Phenomenal achievement done by somebody in his very early twenties… Bob was one of those people who could maintain perspective because he was inordinately bright. Steve could not. He was very, very passionate, highly competitive.”
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (SCHOOL)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mimosys</td>
<td>Processor Architecture Laboratory (IC/LAP)</td>
<td>Paolo Ienne / Jason Brown</td>
</tr>
<tr>
<td>Production of proteins</td>
<td>Cellular Biotechnology Laboratory (External & SV/LBTC)</td>
<td>Peter Bromley / Florian Wurm</td>
</tr>
<tr>
<td>Cytomec</td>
<td>Orthopaedic Research Division (STI)</td>
<td>Tom Quinn</td>
</tr>
<tr>
<td>DAAV technogies</td>
<td>Distributed Information Systems Laboratory (IC/LSIR)</td>
<td>Jie Wu</td>
</tr>
<tr>
<td>Opt.im</td>
<td>Artificial Intelligence Laboratory (IC/LIA)</td>
<td>Ion Constantinescu</td>
</tr>
<tr>
<td>Cooling techniques of microprocessors</td>
<td>Heat and Mass Transfer Laboratory (STI/LTCM)</td>
<td>James DeRose</td>
</tr>
<tr>
<td>Anokion</td>
<td>Merck Serono Chair in Drug Delivery (SV/LMRP)</td>
<td>Jeff Hubbell</td>
</tr>
</tbody>
</table>
Innogrants - 2006

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (SCHOOL)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastree 3D</td>
<td>Processor Architecture Laboratory (IC/LAP)</td>
<td>Cristiano Niclass</td>
</tr>
<tr>
<td>Medical Imaging System</td>
<td>Biomedical Optics Laboratory (STI/LOB)</td>
<td>Alexandre Serov</td>
</tr>
<tr>
<td>Biocomposites</td>
<td>Laboratory of Composite and Polymer Technology (STI/LTC)</td>
<td>Laurence Mathieu</td>
</tr>
<tr>
<td>Molecule Modelisation</td>
<td>Processor Architecture Laboratory (External & IC/LAP)</td>
<td>Payal Kapor</td>
</tr>
<tr>
<td>Attolight</td>
<td>Laboratory of Quantum Optoelectronics (SB/LOEQ)</td>
<td>Samuel Sonderreger</td>
</tr>
<tr>
<td>Jilion</td>
<td>Algorithmics Laboratory (IC/ALGO)</td>
<td>Zeno Crivelli</td>
</tr>
<tr>
<td>Inocs</td>
<td>Integrated Systems Laboratory(STI/IC)</td>
<td>Srinivasan Murali</td>
</tr>
<tr>
<td>RouteRANK</td>
<td>Laboratory for Computer Communications and Applications (IC/LSA2)</td>
<td>Jochen Mundinger</td>
</tr>
</tbody>
</table>
Innogrants - 2007

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (SCHOOL)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediggo</td>
<td>Artificial Intelligence Laboratory (IC/LIA)</td>
<td>Vincent Schickel</td>
</tr>
<tr>
<td>Enairys</td>
<td>Industrial Electronics Laboratory (STI/LEI)</td>
<td>Sylvain Lemofouet</td>
</tr>
<tr>
<td>Gliapharm</td>
<td>Laboratory of Neuroenergetics and Cellular Dynamics (SV/LNDC)</td>
<td>Luc Pélerin</td>
</tr>
<tr>
<td>Optimax (logistics and the internet)</td>
<td>Artificial Intelligence Laboratory (IC/LIA)</td>
<td>Adrian Petcu</td>
</tr>
<tr>
<td>Gaiasens</td>
<td>Environmental Fluid Mechanics Laboratory (ENAC/EFLUM)</td>
<td>Olivier Couach</td>
</tr>
<tr>
<td>Lemoptix</td>
<td>Microsystems Laboratory (STI/LMIS4)</td>
<td>Nicolas Abele</td>
</tr>
<tr>
<td>Stereotools</td>
<td>Signal Processing Laboratory 5 (STI/LTS5)</td>
<td>Jean-Philippe Thiran</td>
</tr>
</tbody>
</table>

About some Innogrants 2007
Innogrants - 2008

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (SCHOOL)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB4all</td>
<td>Database Laboratory (IC/LBD)</td>
<td>David Portabella</td>
</tr>
<tr>
<td>Social Web Browsing</td>
<td>Operating Systems Laboratory (IC/LABOS)</td>
<td>Rodrigo Schmidt</td>
</tr>
<tr>
<td>Novagan</td>
<td>Laboratory of Advanced Semiconductors for Photonics and Electronics (SB/LASPE)</td>
<td>Eric Feltin</td>
</tr>
<tr>
<td>ExCellness</td>
<td>Laboratory of Cell Biophysics (SB/LCB)</td>
<td>Pierre-Jean Wipff</td>
</tr>
<tr>
<td>Aïmago</td>
<td>Laboratory of Biomedical Optics (STI/LOB)</td>
<td>Michael Friedrich</td>
</tr>
<tr>
<td>Aleva Neurotherapeutics</td>
<td>Microsystems Laboratory (STI/LMIS4)</td>
<td>Andre Mercanzini</td>
</tr>
<tr>
<td>Antispam and filtering methods</td>
<td>Laboratory for Computer Communications and Applications (IC/LSA2)</td>
<td>Slavisa Sarafijanovic</td>
</tr>
<tr>
<td>Madeinlocal</td>
<td>Institute of Core Computing Science (IC/CGC)</td>
<td>Manuel Acevedo</td>
</tr>
</tbody>
</table>

Images of logos of Novagan, Aïmago, ExCellness, and Aleva Neurotherapeutics
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (SCHOOL)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minsh</td>
<td>Distributed Systems Laboratory (IC/LSR)</td>
<td>Barbara Yersin / Jonathan Maim</td>
</tr>
<tr>
<td>Ozwe</td>
<td>Pedagogical Research and Support (CRAFT)</td>
<td>Frédéric Kaplan</td>
</tr>
<tr>
<td>Wippso</td>
<td>Institute of Electrical Engineering (STI/IEL)</td>
<td>Marco Mattavelli</td>
</tr>
<tr>
<td>Anti-tumour Agents</td>
<td>Laboratory of Glycochemistry and Asymmetric Synthesis (SB/LGSA)</td>
<td>Claudia Bello</td>
</tr>
<tr>
<td>Imina</td>
<td>Robotic Systems Laboratory 2 (STI/LSRO2)</td>
<td>Guillaume Boetsch / Benoit Dagon / Christophe Canales</td>
</tr>
<tr>
<td>PROJECT</td>
<td>LABORATORY (FACULTY)</td>
<td>PEOPLE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>GoldenMMA</td>
<td>Microsystems Laboratory 1 (STI/LMIS1)</td>
<td>Bastien Rachet</td>
</tr>
<tr>
<td>Lake Mind Cloud Management</td>
<td>Operating Systems Laboratory (IC/LABOS)</td>
<td>Jean-Philippe Martin Flatin</td>
</tr>
<tr>
<td>Abionic</td>
<td>Microsystems Laboratory 4 (STI/LMIS4)</td>
<td>Nicolas Durand</td>
</tr>
<tr>
<td>Samantree</td>
<td>Laboratory of Physical Chemistry of Polymers and Membranes (SB/LCPPM)</td>
<td>Davor Kosanic</td>
</tr>
<tr>
<td>BugBuster</td>
<td>Operating Systems Laboratory (IC/LABOS)</td>
<td>Olivier Crameri / John Renault</td>
</tr>
<tr>
<td>PROJECT</td>
<td>LABORATORY (FACULTY)</td>
<td>PEOPLE</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Mindmaze</td>
<td>Laboratory of Cognitive Neuroscience</td>
<td>Tej Tadi</td>
</tr>
<tr>
<td></td>
<td>(SV/LNCO)</td>
<td></td>
</tr>
<tr>
<td>Therapeutics for ALS</td>
<td>Polymers Laboratory (STI/LP)</td>
<td>Harm-Anton Klok</td>
</tr>
<tr>
<td>L.E.S.S. - Nanofiber illuminator</td>
<td>STI Scientists Group(STI/GR-STI)</td>
<td>Yann Tissot &</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simon Rivier</td>
</tr>
<tr>
<td>Swiss to 12</td>
<td>Laboratory of the Physics of Nanostructured</td>
<td>Alessandro Macor &</td>
</tr>
<tr>
<td></td>
<td>Materials(SB/LPMN)</td>
<td>Emile de Rijk</td>
</tr>
<tr>
<td>KB Medical</td>
<td>Robotic Systems Laboratory 2 (STI/LSRO2)</td>
<td>Philippe Bérard &</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Szymon Kostrzewski</td>
</tr>
<tr>
<td>Azbooka</td>
<td>Ceramics Laboratory (STI/LC)</td>
<td>Evgeny Miljutin</td>
</tr>
</tbody>
</table>
Innogrants - 2012

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (FACULTY)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distalmotion</td>
<td>Robotic Systems Laboratory 1 (STI/LSRO1)</td>
<td>Ricardo Beira</td>
</tr>
<tr>
<td>Cellestia Biotech</td>
<td>Prof. Radtke’s Unit (SV/UPRAD)</td>
<td>Rajwinder Lehal</td>
</tr>
<tr>
<td>Osmobule</td>
<td>Microsystems Laboratory 4 (STI/LMIS4)</td>
<td>Elodie Dahan</td>
</tr>
<tr>
<td>Faceshift</td>
<td>Computer Graphics and Geometry Laboratory (IC/LGG)</td>
<td>Thibaut Weise</td>
</tr>
<tr>
<td>Nanolive - super-resolution microscopy</td>
<td>Group Depeursinge (STI/GR)</td>
<td>Yann Cotte</td>
</tr>
<tr>
<td>Morphotonix</td>
<td>Microsystems Laboratory 1 (STI/LMIS1)</td>
<td>Sheni Xie & Vaida Auzelyte</td>
</tr>
<tr>
<td>Nanoga- DNA Watch</td>
<td>Laboratory of Advanced Semiconductors for Photonics and Electronics (SB/LASPE)</td>
<td>Nasser Hefyene</td>
</tr>
<tr>
<td>SmartCardia</td>
<td>Embedded Systems Lab. (STI/ESL)</td>
<td>Srini Murali</td>
</tr>
<tr>
<td>Shoelace Wireless</td>
<td>Laboratory of Algorithmic Research on Networked Information(IC/ARNI)</td>
<td>Lorenzo Keller</td>
</tr>
</tbody>
</table>
Innogrants - 2013

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (FACULTY)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Playfulvision</td>
<td>Computer Vision Laboratory (IC/CVLAB)</td>
<td>Horesh Ben Shitrit</td>
</tr>
<tr>
<td>Makur</td>
<td>L'IDIAP Laboratory (STI/LIDIAP)</td>
<td>Joan Isaac Biel</td>
</tr>
<tr>
<td>Lunaphore</td>
<td>Microsystems Laboratory 2 (STI/LMIS2)</td>
<td>Ata Tuna Ciftlik</td>
</tr>
<tr>
<td>Imperix</td>
<td>Industrial Electronics Laboratory (STI/LEI)</td>
<td>Simon Delalay & Nicolas Cherix</td>
</tr>
<tr>
<td>Code Tickler</td>
<td>Dependable Systems Lab (IC/DSLAB)</td>
<td>Cristian Zamfir</td>
</tr>
<tr>
<td>G-Therapeutics</td>
<td>Brain & Mind Institute (SV/BMI)</td>
<td>Vincent Delattre</td>
</tr>
<tr>
<td>Bright Sensors</td>
<td>Microtechnics Production Lab. (STI/LPM)</td>
<td>Gael Farine & Conor Slater</td>
</tr>
<tr>
<td>Rovenso</td>
<td>Biorobotics Laboratory (STI/BIOROB)</td>
<td>Thomas Estier</td>
</tr>
<tr>
<td>Anemomind</td>
<td>Computer Vision Laboratory (IC/CVLAB)</td>
<td>Julien Pilet</td>
</tr>
<tr>
<td>Oncoeffective</td>
<td>Microsystems Laboratory 4 (STI/LMIS4)</td>
<td>Robert Meissner</td>
</tr>
</tbody>
</table>
Innogrants - 2014

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (FACULTY)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xsensio</td>
<td>Nanoelectronic Devices Lab (STI/NANOLAB)</td>
<td>Esmeralda Magally</td>
</tr>
<tr>
<td>RAW</td>
<td>Data-Intensive Applications and Systems Lab. (IC/DIAS)</td>
<td>Miguel Branco</td>
</tr>
<tr>
<td>Cloud Storage</td>
<td>Image and Visual Representation Laboratory (IC/IVRG)</td>
<td>T. Lochmatter, R. Achanta</td>
</tr>
<tr>
<td>Biosemic</td>
<td>Laboratory of the Physics of Living Matter (SB/LPMV)</td>
<td>Wiktor Lisowksi</td>
</tr>
<tr>
<td>Lucentix</td>
<td>Laboratory of Protein Engineering (SB/LIP)</td>
<td>Rudolf Griss & Alberto Schena</td>
</tr>
<tr>
<td>Intento</td>
<td>Chair in Non-invasive Brain-machine Interface (STI/CNBI)</td>
<td>Andrea Maesani & Andrea Biasiucci</td>
</tr>
<tr>
<td>SensArs Neuroprosthetics</td>
<td>Translational Neural Engineering Laboratory (STI/TNE)</td>
<td>F. Petrini, S. Raspopovic, M. Capogrosso</td>
</tr>
<tr>
<td>Sun Biosciences</td>
<td>Laboratory of Stem Cell Bioengineering (SV/LSCB)</td>
<td>Sylke Hoehnel & Nathalie Bradenberg</td>
</tr>
<tr>
<td>Graspeo</td>
<td>Real-Time Coordination & Dist. Interact. Syst. (STI/REACT)</td>
<td>Andrii Vozniuk</td>
</tr>
<tr>
<td>Nowy</td>
<td>Dependable Systems Laboratory (IC/DSLAB)</td>
<td>L. Gardiol, A. Chamseddine & S. Andrica</td>
</tr>
<tr>
<td>ObViz</td>
<td>Artificial Intelligence Laboratory (IC/LIA)</td>
<td>Claudiu Musat</td>
</tr>
<tr>
<td>EAR</td>
<td>Audiovisual Communications Lab (IC/LCAV)</td>
<td>Juri Ranieri & Ivan Dokmanic</td>
</tr>
</tbody>
</table>

About some Innogrants

Xsensio

RAW Labs

Lucentix

Intento

SensArs

Sun Biosciences

EPFL Innogrants | 2017
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (FACULTY)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty Green</td>
<td>Electronics and Signal Processing Laboratory (STI/ESPLAB)</td>
<td>Mario Zaiß & Duncan Sutherland</td>
</tr>
<tr>
<td>Sthar</td>
<td>Laboratory of Theoretical Physical Chemistry (SB/LCPT)</td>
<td>Alberto Hernando de Castro, Miroslav Sluc, Marius Wehrle & Eduardo Zambrano</td>
</tr>
<tr>
<td>Swiss Sonic Production</td>
<td>Laboratory of Microengineering for Manufacturing (STI/LPM)</td>
<td>Csaba Laurenczy</td>
</tr>
<tr>
<td>Notch Enhancers</td>
<td>Laboratory of Synthesis and Natural Products (SB/LSPN) & Radtke Group (SV/UPRAD)</td>
<td>Viktoria Reinmüller</td>
</tr>
<tr>
<td>Volumina</td>
<td>Microsystems Laboratory 4 (STI/LMIS4)</td>
<td>Amélie Béduer & Thomas Braschler</td>
</tr>
<tr>
<td>Cellphmed</td>
<td>Laboratory of Virology and Genetics (SV/LVG)</td>
<td>Marc Friedli</td>
</tr>
<tr>
<td>Technis</td>
<td>Microsystems Laboratory 4 (STI/LMIS4)</td>
<td>Naïk Londono, Martin Hofmann & Wiktor Bourée</td>
</tr>
<tr>
<td>TasteHit</td>
<td>Unit of prof. Salathé (SV/UPSALATHE)</td>
<td>Alexei Kounine & Christopher Burger</td>
</tr>
<tr>
<td>ArtMYN</td>
<td>Audiovisual Communications Lab (IC/LCAV)</td>
<td>Loïc Baboulaz, Alexandre Catsicas, Julien Lalande, Mathieu Rudelle</td>
</tr>
<tr>
<td>Daphne</td>
<td>Swiss Plasma Center (SB/SPC)</td>
<td>Mario Michan</td>
</tr>
<tr>
<td>Insolight</td>
<td>Laboratory of Applied Photonics Devices (STI/LAPD)</td>
<td>Laurent Coulot, Mathieu Ackerman, Florian Gerlich</td>
</tr>
</tbody>
</table>
Innogrants – 2016

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>LABORATORY (FACULTY)</th>
<th>PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXII Inhibitor</td>
<td>Laboratory of Therapeutic Proteins and Peptides (SB/LPPT)</td>
<td>Christian Heinis, Andres McAllister</td>
</tr>
<tr>
<td>Active Wearables</td>
<td>Robotic Systems Laboratory (STI/LSRO)</td>
<td>Simon Gallo, Giulio Rognini</td>
</tr>
<tr>
<td>Chef’s Road</td>
<td>Operating Systems Laboratory (IC/LABOS)</td>
<td>Youssef El Houti, Abdelkoudouss Badou</td>
</tr>
<tr>
<td>Vizir</td>
<td>Image and Visual Representation Laboratory (IC/IVRL)</td>
<td>Martijn Bosch & Adrien Bierbaumer</td>
</tr>
<tr>
<td>Dispencell</td>
<td>Stem Cell Dynamics Laboratory (SV/LDCS)</td>
<td>Georges Muller & David Bonzon</td>
</tr>
<tr>
<td>Thinkeee</td>
<td>Group Kayal (STI/GR_KA)</td>
<td>Nastaran Asadi Zanjani, Johann Bigler & Jean-Charles Fosse</td>
</tr>
<tr>
<td>Lironix</td>
<td>Laboratory of Macromolecular and Organic Materials (STI/LMOM)</td>
<td>Giuseppe Sforazzini</td>
</tr>
<tr>
<td>MiraEx</td>
<td>Group Villanueva (STI/GR_LVT)</td>
<td>Clément Javerzac-Galy & Nicolas Piro</td>
</tr>
<tr>
<td>TWIICE</td>
<td>Laboratoire de Systèmes Robotiques (STI/LSRO)</td>
<td>Marek Jancik & Tristan Vouga</td>
</tr>
<tr>
<td>EEG buds</td>
<td>Defitech foundation chair in Brain-Machine interface (STI/CNBI)</td>
<td>Naik Londono</td>
</tr>
<tr>
<td>Lumigbo</td>
<td>Laboratory of Biomedical Orthopedics (STI/LBO)</td>
<td>Andreas Schmocker, Azadeh Khoushabi</td>
</tr>
<tr>
<td>GRZ Technologies</td>
<td>Laboratory of Materials for Renewable Energy (SB/LMER)</td>
<td>Noris Gallandat, Claudio Ruch</td>
</tr>
</tbody>
</table>
INTERNET AND SOFTWARE

ELECTRONICS

OTHER HARDWARE (ROBOTICS, MECHANICS, SENSORS)

ENERGY & ENVIRONMENT

MEDICAL DEVICES & BIOTECHNOLOGY
Travel Planning

routeRANK integrates road, rail and air travel within Europe! Flight information is also available for all major airports world-wide.

1. Search
 Start typing a name and choose from a list of available locations.

2. Select
 Sort the results according to what is most important to you – travel means, travel time, price, and CO2 emissions.

3. Buy
 Follow the links to travel providers’ websites where you can purchase your tickets or find more information.

Travel Green
 Sort your results by CO2 emissions to find the most ecological way of travelling.

Jochen Mundinger
Recommendation Solution

Patented Technology
Profile Targeting
Catalog Modeling
Marketer Tools

Intelligent Cross Selling
Smarter Search
Dynamic Merchandising
1 to 1 Marketing

prediggo Solutions
« Our online conversion rate went up 50% »
Moevenpick AG.

Vincent Schickel
A Social Network

About some Innogrants
E-learning

Additionner deux nombres
Faites la soustraction
Multiplier deux nombres
d’autres vont suivre!

Nous développons un enseignement virtuel de mathématiques pour aider les enfants à faire leurs devoirs en animant pas à pas les leçons (comme montré sur cette page). Nous nous efforçons de le mettre à disposition des enseignants et des élèves à un prix abordable pour tous.

Si vous êtes intéressé laissez-nous vos coordonnées et nous vous contacterons dès que le produit sera en vente.

Votre nom

Votre e-mail

Je suis élève parent enseignant

Envoyer

Correct: 0
Incorrect: 0

Exercice: Additionner deux nombres

7 4 9 5 3 + 5 4 3 2 =

Vérifier

Solution:

1

+ 7 4 9 5 3

Suivant
Local Information
Chef’s Road

Food supply chain

farmer → Transport → storage → Transport → storage → consumer
Web Testing

Load Web Application → Extract source code → Read and understand code

Report results → Continue

Check for bug → Trigger user action

About some Innocrats

Internet
Cyberhaven

Test Report
15 bugs found

SQLiTE DB
Library
2 invalid memory accesses
3 memory corruption bugs
Details »

Memcached
Application
2 concurrency bugs
3 resource leaks
Details »

Realtek RTL8029
Network device driver
4 kernel crashes
1 resource leak
Details »

© Agile Gibbon - 2013
Cloud Management

Value chain in public clouds

About some Innogrants

J.-P. Martin Flatin
Mobile Software Apps

Gallery: Windows Mobile

Find Number of displayed rows 25 Go

File Galleries > 大武科技手机个性化信息助手 > 大武智能短信拦截器 > 简洁版(Basic Edition) > Windows Mobile平台

<table>
<thead>
<tr>
<th>Icon</th>
<th>T</th>
<th>Filename</th>
<th>Size</th>
<th>Last Modified</th>
</tr>
</thead>
</table>

Win a 10-day entrepreneurship training in Boston

About some Innogrants Internet & Mobile
Internet and Mobile Apps

Soon to be released!
SublimeVideo®
HTML5 Video Player

Acquired by
Jilion

Daily motion

Zeno Crivelli

About some Innogants
Internet & Mobile
Network Technologies for Mobile

Graphical User Interface for Microcast prototype for video streaming
Software Applications

Complete signage solution at your fingertips

Use your content or customize our templates

Our Website

COMING SOON
[preview access]

LCD Display
42” In

6 ft

At Your Locations

LCD Frame
10”, 15” In
Motion Capture

realtime markerless motion capture at every desk

what is faceshift

faceshift is accurate, effortless, and affordable markerless facial performance capture.

faceshift uses depth cameras such as Microsoft's Kinect to animate rigs in real time.

faceshift works seamlessly for fast facial expressions, head motions, and difficult environments.

About some Innogrants

Software

Undisclosed acquirer rumored to be Apple
Video Tracking
Vision & Sailing

Advanced data processing algorithms and devices to help sailors win races.
Figure 1: Video screening job candidates explained in four steps.
RAW Labs

Efficient access to RAW data
Today’s cloud services

Your laptop → upload → cloud storage provider ↔ download ↔ untrusted international networks

untrusted WLAN
untrusted DSL
untrusted GCHQ
untrusted NSA

Cloud Storage

About some Innogrants

Software
Graspeo

Share Knowledge *Privately*

Graspeo Server

- Filename
- Time
- Owner

Hello Graspeo!

Syncing with Peer-to-Peer
Nowy

Loïc Gardiol, Amer Chamseddine & Silvi Andrica

https://nowyapp.com/
EAR : Enhanced Auditory Reality

We want to create a bridge between enhanced hearing, wearables and augmented reality. Our vision is to allow everyone, with or without hearing losses, to design and augment their auditory experience. Our technology would process the sounds recorded by microphones and video from a camera to locate sound sources, amplify what we like, silence what annoys us, and inform us about what we hear.

These features require innovative signal processing that cannot be implemented on traditional HAs, which provides tools and data to augment the auditory reality of the user; they also require innovation in human-computer interfaces.
Recent advances in Artificial Intelligence, including the mixture of machine learning with Human Computation, open possibilities that were unthinkable a few short years ago. We leverage these technological gains to achieve a good accuracy in automatically extracting relevant aspects and opinions from texts. We then use this wealth of data to make quality recommendations.
Demographic dynamics and population flows:

Spain

US
Personnalisez votre boutique en ligne avec des recommandations personnalisées

Télécharger GRATUITEMENT
About some Innogrants

Loïc Baboulaz, Alexandre Catsicas, Julien Lalande, Mathieu Rudelle
INTERNET AND SOFTWARE
ELECTRONICS
OTHER HARDWARE (ROBOTICS, MECHANICS, SENSORS)
ENERGY & ENVIRONMENT
MEDICAL DEVICES & BIOTECHNOLOGY
Micro-Display Technologies

Acquired by

Nicolas Abelé

About some Innigrants

Electronics
Edge-Lighting Devices

Light shaping by nano-structured waveguides

... as thin as a human hair

Cadmium free
Mercury free

20 μm

for energy efficient distributed illumination

Yann Tissot
Simon Rivier
Technis

Experience a world, Beyond the Court
DISCOVER / SHARE / HAVE FUN

Naïk Londono, Martin Hofmann & Wiktor Bourée

About some Innogrants
A New Computer Interface

L’ordinateur sans clavier ni souris est suisse

The Museum of Modern Art, New York

Frédéric Kaplan
Spads – 3D Imaging

depth imaging

SPAD CMOS Time-of-Flight
Vizir

About some Innogrants

Electronics

Martijn Bosch & Adrien Bierbaumer
Predictive maintenance in harsh environments?

Optical fiber sensors + smart analytics
Nanophotonics Spectroscopy

Samuel Sonderegger
Jean Berney
Lasers & Diodes Materials

Laser Products

Processing

AllN HEMT at High temperature

Characterizations

About some Innogrants
New Chip Architecture
Automated Chip Design

Jason Brown
INTERNET AND SOFTWARE
ELECTRONICS
OTHER HARDWARE (ROBOTICS, MECHANICS, SENSORS)
ENERGY & ENVIRONMENT
MEDICAL DEVICES & BIOTECHNOLOGY
Robots to preserve life

Every day heroes are risking their lives to help others getting safe. These are firefighters and rescuers operating in natural or industrial disasters.
But no one should ever be exposed to hazardous environments.

This simple and natural statement is the root of rovenso’s motivation to build robots than can take care of dangerous tasks when the job needs to get done. Earthquakes, landslides, hurricanes, fires or explosions create complex environments which are usually cluttered with rubbles and sometimes contaminated with chemicals or radiations. Manipulating or moving heavy stuff under these conditions is dangerous for humans but is also extremely challenging for automated systems.

Tomorrow, fully autonomous robots will handle these hazardous tasks for us.

http://www.rovenso.com
Micro-Robots

Benoit Dagon
Christophe Canales
Guillaume Boetsch
Photonics via Moulding

✓ Healthy
✓ Innovative
✓ Personalized

Photonic™ chocolate
- A colourful technology to taste

Auzelyte Vaida & Xie Shenqi

Photonic™ plastic
- Colours without additives
✓ Additive-free
✓ On 3D surfaces
✓ Mouldable articles
Xsensio

CUTTING EDGE TECHNOLOGY
LOW POWER WIRELESS SENSING AND ENERGY HARVESTING

About some Innigrants

Electronics

Esmeralda Magally
Anti-Counterfeiting for Watches

Nasser Hefyene
Wobbe Index

Evaluation Kit

The Quantitative Energy Wobbe Index Measurement System (WIMS) can accurately measure the energy content of any Natural Gas or Biogas.

Variations in the energy content of a gas (the Wobbe Index) can lead to a mismatch in the air fuel ratio. This is the main cause of poor performance in terms of ignition, efficiency, emissions, reliability and safety of any appliance that uses the gas.

Our instrument is compact enough to be installed in most gas appliances where it can measure the Wobbe Index before the gas is burnt allowing the air fuel ratio to be adjusted correctly.
Terahertz Transmission

New sources
- from 300 kg to less than 1 kg
- from 500k CHF to 50k CHF
- but, from 100 W to 1mW (!)

Nowadays while several options can be found for sources and detectors...
key point: there’s a lack of technical solution for efficient wave-guiding (!)

This is where SWISSto12 wants to play a major role
FIELDS

INTERNET AND SOFTWARE
ELECTRONICS
OTHER HARDWARE (ROBOTICS, MECHANICS, SENSORS)
ENERGY & ENVIRONMENT
MEDICAL DEVICES & BIOTECHNOLOGY
Energy Storage via Air Compression

Clean Energy…
From time to time

Clean Conversion & Storage
Based on Compressed Air

Clean Energy…
All the time

and/or

(HyPES System)

- Sunny or Windy times:
STORAGE = Air Compression

- Sunless & Windless times:
DISCHARGE = Air Expansion

Sylvain Lemofouet
Energy Generation & Osmosis

28% Energy for cooling

70% Power

Waste Heat

OsmoTech

Patented Technology

helbling

Win a 10-day entrepreneurship training in Boston

Fundación REPSOL

GEBERT RÜF STIFTUNG

Energy Generation & Osmosis

About some Innogrants

Energy
Upcoming changes in the electricity production structure

Future situation: better grid quality and stability is achieved through the use of power converters and appropriate control strategies (smart-grid approach).
Daphne Technology

Marine Air Pollution Control Opportunity
DISRUPTIVE INNOVATION IN OPTICS FOR SOLAR ENERGY

OUR VISION
Thinkee

About some Innogrants

Electronics
Lironix

Smart Windows
For Building Integrated Photovoltaics (BIPVs)
GRZ Technologies

About some Innogrants

Energy

Claudio Ruch & Noris Gallandat

GRZ Technologies
INTERNET AND SOFTWARE
ELECTRONICS
OTHER HARDWARE (ROBOTICS, MECHANICS, SENSORS)
ENERGY & ENVIRONMENT
MEDICAL DEVICES & BIOTECHNOLOGY
Microelectrodes for Neuro-Diseases

A size comparison between an existing lead and Aleva’s technology

Andre Mercanzini
Tools for Neurosurgery
Mechanical Robot for Surgery
Haptic Robot for Surgeries

About some Innogrants

Szymon Kostrzewski
Philippe Bérard

Acquired by
G-Therapeutics

Helping paraplegic patients walk again
Intento

Movement controller (knob)

Allows all patients to benefit from CIMT

Andrea Maesani & Andrea Biasucci
SensArs Neuroprosthetics

Amputee Feels in Real-Time with Bionic Hand

05.02.14 - Dennis Aabo Sørensen is the first amputee in the world to feel sensory rich information – in realtime – with a prosthetic hand wired to nerves in his upper arm. Sørensen could grasp objects intuitively and identify what he was touching while blindfolded.

TWIICE

About some Innogrants | Medtech

Marek Jancik & Tristan Vouga
Remote Cardiac Monitoring

About some Innogrants
EEG Buds

NEUROLOGICAL DISORDERS
A global disease burden

50 MILLION PEOPLE SUFFER FROM EPILEPSY

62 MILLION PEOPLE SUFFER FROM CEREBROVASCULAR DISEASE

326 MILLION SUFFER FROM MIGRAINE

244 MILLION SUFFER FROM ALZHEIMER DISEASE AND OTHER DEMENTIAS.

Naik Londono
Leonardo DiCaprio Invests in Emotion-Capture Startup MindMaze

Switzerland-based human-computer interfaces startup MindMaze has attracted an investment from none other than Leonardo DiCaprio, who is also joining the company’s board of advisors. The investment is being made as part of a new round of funding that hasn’t closed, and the amount of money DiCaprio is investing wasn’t revealed as part of the announcement.
Medical Imaging System

FluxEXPLORER™ Microvascular imaging

before occlusion during occlusion after occlusion

Laser Doppler Perfusion
LOW BLUE YELLOW PINK HIGH

About some Innogrants Medtech
Medical Imaging System

Visualizing Microcirculation

Acquired by NOVADAQ

Michael Friedrich
Active Wearables

- Temperature
- Force
- Vibration

About some Innogrants

Medtech
Optics for Endoscopy
Super-Resolution Microscopy

Microfluidics & Allergies

Nicolas Durand
Lunaphore

Fig. 1. Design of the Microfluidic Tissue Processor

Fig. 2. Photographs of the device and the assembled system.
Lumigbo

About some Innogrants

Medtech

Andreas Schmocker
Azadeh Khoushabi
Oriane Poupard
Biosemic

New screening diagnostic tools based on micro engineering used to develop personalized healthcare.
Impedance-driven cancer medicine

Cancer patient → Biopsy → Tumor fragments → Direct transfer to wells → 1 day drug-perfusion

On-line electric measurements → Bio-impedance Z

→ Personalized therapy

Electric measurements drive therapy design
Handheld optical reader for diagnostic test strips
Dispencell

Georges Muller & David Bonzon

About some Innografts

Medtech
Cell Culture Platform

Sylke Hoehnel & Nathalie Bradenberg

About some Innigrants

Medtech
Personalized medicine
Volumina

About some Innogrants

Medtech
Cell Culture Dish Technology
Notch Inhibitors for Cancer Therapy

Cancer cells need Notch signaling to proliferate and metastasize

- T-ALL
- Breast Cancer
- Colorectal Cancer?
- GSI are currently used in clinical phase!
- Prostate Cancer
- Glioblastoma
- Medulloblastoma
- Tumor Angiogenesis
Notch Enhancers

Notch Receptor

Ligand

Viktoria Reinmüller
We sell a **bioactive** animal feed supplement for **sustainable, ecofriendly, respectful** animal farming, as well as expert consultancy for ad-hoc product formulations.
FXII Inhibitor

Coagulation Cascade

Intrinsic Pathway (surface contact)
- XIIa
- XIa
- IXa
- aPTT
- PT

Extrinsic Pathway (tissue factor)
- VIIa
- Xa
- Heparin (LMWH)
- Hirudin/Hirulog
- Thrombin (IIa)
- Thrombin-Fibrin Clot

Christian Heinis, Andres McAllister